Two-dimensional anisotropic spiral self-avoiding walks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1986 J. Phys. A: Math. Gen. 191645
(http://iopscience.iop.org/0305-4470/19/9/036)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 10:59

Please note that terms and conditions apply.

Two-dimensional anisotropic spiral self-avoiding walks

A J Guttmann and K J Wallace
Department of Mathematics, Statistics and Computer Science, The University of Newcastle, NSW 2308, Australia

Received 1 August 1985

Abstract

Two models of anisotropic spiral self-avoiding random walks recently proposed by Manna have been investigated by the method of exact series expansions. The number of such n-step walks, c_{n}, appears to behave like $c_{n} \sim$ constant $\times \mu^{n} n^{\beta} \exp (\alpha \sqrt{n})$ where both μ, which is known exactly, and the constant factor are model dependent but $\alpha \approx 0.14$ and $\beta \approx 0.9$ appear to be model independent. The mean square end-to-end distance exponent $\nu=0.855 \pm 0.02$ for both models.

1. Introduction

Recently Manna (1984) proposed two variants of the problem of self-avoiding walks (saw) on the square lattice. These variants combine the features of the normal saw and the spiral saw, recently introduced by Privman (1983) and subsequently solved by Guttmann and Wormald (1984) and Blöte and Hilhorst (1984). In the square lattice spiral SAW, no step through $-\pi / 2$ is permitted. That is, in addition to the self-avoiding constraint, no 'turns to the right' are permitted at any step. This additional constraint dramatically changes the critical behaviour from that of the normal saw, in that the number of n-step spiral sAw, denoted by s_{n}, behaves like

$$
\begin{equation*}
s_{n} \sim c \exp \left[2 \pi(n / 3)^{1 / 2}\right] / n^{7 / 4}\left(1+\mathrm{O}\left(n^{-1 / 2}\right)\right) \tag{1.1}
\end{equation*}
$$

where $c=\pi /\left(4 \times 3^{5 / 4}\right)$, while the mean square end-to-end distance $\left\langle R_{n}^{2}\right\rangle$ behaves like

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle \sim n \ln n . \tag{1.2}
\end{equation*}
$$

Manna's models are a mixture of the ordinary and spiral SAw, in that the spiral constraint applies only to steps in the direction of the x axis. To be more precise, if the nth step is in the $+x$ or $-x$ direction, the $(n+1)$ th step cannot be in the $-y$ or $+y$ direction, respectively. If the nth step is in the $\pm y$ direction, then in model A the $(n+1)$ th step cannot be in the same (i.e. $\pm y$) direction, while in model B the ($n+1$)th step is unconstrained, apart from the global saw constraint that applies to all steps.

These two models, and the spiral SAw model, do not appear to be of any physical significance, but are interesting as models which display 'different' critical behaviour. As such, they are illuminating in our study of the mechanism whereby the universality class of sAw models changes, which is the subject of a subsequent paper in this series (Guttmann 1986).

2. Series derivation

Manna obtained 28 and 21 terms in the series expansion of the generating function for model A and B walks respectively, and a similar number of terms for the mean square end-to-end distance sequence. Adopting the usual notational conventions, we write the chain generating function as

$$
\begin{equation*}
C(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \tag{2.1}
\end{equation*}
$$

where c_{n} is the number of n-step walks, $c_{n} \sim \mu^{n} f(n)$ and $\lim _{n \rightarrow \infty}(1 / n) \log f(n)=0$. For ordinary saw $f(n)$ is believed to behave like $f(n) \sim n^{(\gamma-1)}$, but all that has been proved (Hammersley and Welsh 1962) is that $f(n)=\mathrm{O}\left(\mathrm{e}^{\sqrt{n}}\right)$. For spiral saw, as we have seen, $f(n) \sim \exp \left[2 \pi(n / 3)^{1 / 2}\right] / n^{7 / 4}$.

The mean square end-to-end distance, denoted $\left\langle R_{n}^{2}\right\rangle$, is known to behave as

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle \sim A n^{2 \nu} \tag{2.2}
\end{equation*}
$$

where $\nu=\frac{3}{4}$ for two-dimensional SAw (Nienhuis 1982, 1984) while for spiral sAw $\left\langle R_{n}^{2}\right\rangle \sim A n \log n$ (Blöte and Hilhorst 1984).

Manna's brief analysis of his series coefficients assumed $f(n) \sim n^{g}$, and he found $\mu \approx 2.04$ (model B), $\mu \approx 1.63$ (model A), $\gamma=1.613$ (B) and $\gamma=1.535$ (A), $\nu=$ 0.828 ± 0.001 (B) and $\nu=0.852 \pm 0.002$ (A). An alternative analysis assuming $\left\langle R_{n}^{2}\right\rangle \sim$ $N^{2 \nu} \log N$ gave $\nu=0.735 \pm 0.015$ (A) and $\nu=0.723 \pm 0.009$ (B).

Subsequently Whittington (1985) gave a convincing but non-rigorous argument which showed that $\mu=\frac{1}{2}(1+\sqrt{5})$ (model A) and $\mu=2$ (model B). Given that Manna's estimates for μ are in error by about 2%, and that the error in μ normally compares to the error in γ in the ratio $1: N$, where N is the number of coefficients, the apparent precision in γ and claimed precision in ν seem somewhat optimistic. In this paper we have extended Manna's series by 12 and 9 terms for models A and B respectively, and have performed a thorough series analysis. The series coefficients are shown in table 1. They were derived by a straightforward counting procedure on a VAX 11/780. The algorithm used was essentially a backtracking algorithm, comprising nested DO loops. Making maximum use of symmetry, the series obtained took 140 h of CPU time for model A and 309 h for model B.

3. Series analysis

Firstly, assuming a singularity of the conventional type as assumed by Manna, so that $C(x) \sim A(1-\mu x)^{-\gamma}$, unbiased ratio and $d \log$ Padé methods gave estimates of μ above the exact value, but slowly approaching the exact value as the number of terms used in the approximation increased. Convergence was found to be slow and, in the case of the Padé approximants, more than usually erratic. Performing a biased analysis, using the exact values of μ, the estimates of γ were found to be steadily increasing with the order of the approximants. For both models, this behaviour suggested $\gamma>2.6$, which is numerically a large value for a critical exponent. This immediately suggests the following observation: if the exponent is so large, we would expect the singularity to dominate the series behaviour, and hence that the usual methods would converge rapidly to the correct values of μ and γ. Why does this not happen? There are two possible answers. One is that there are strong confluent or competing singularities

Table 1. Series coefficients of chain generating function and mean square end-to-end distance.

n	Model A			Model B		
	c_{n}	$c_{n}\left\langle R_{n}^{2}\right\rangle$	$\left\langle R_{n}^{2}\right\rangle$	c_{n}	$c_{n}\left(R_{n}^{2}\right)$	$\left\langle R_{n}^{2}\right\rangle$
1	4	4	1.0000000	4	4	1.0000000
2	8	20	2.5000000	10	28	2.8000000
3	16	72	4.5000000	24	120	5.0000000
4	28	212	7.5714286	54	424	7.8518519
5	52	556	10.6923077	124	1340	10.8064516
6	90	1348	14.9777778	272	3944	14.5000000
7	160	3088	19.3000000	608	11024	18.1315789
8	276	6788	24.5942029	1314	29664	22.5753425
9	484	14428	29.8099174	2884	77444	26.8529820
10	826	29896	36.1937046	6178	197428	31.9566203
11	1434	60602	42.2608089	13388	493324	36.8482223
12	2438	120736	49.5225595	28486	1212616	42.5688408
13	4194	236842	56.4716261	61168	2938432	48.0387131
14	7104	458784	64.5810811	129446	7034908	54.3462757
15	12150	878582	72.3112757	276020	16662788	60.3680458
16	20506	1666356	81.2618746	581572	39102224	67.2353965
17	34898	3132674	89.7665769	1233204	90996020	73.7882946
18	58740	5844700	99.5011917	2588906	210202724	81.1936486
19	99568	10828048	108.7502812	5464816	482319552	88.2590653
20	167186	19937200	119.2516120	11437088	1100067208	96.1842042
21	282468	36499324	129.2157837	24050760	2495186664	103.7466868
22	473318	66480204	140.4556852	50201640	5631375824	112.1751366
23	797462	120510542	151.1175981	105228216	12650695032	120.2215101
24	1333866	217518408	163.0736581	219139194	28299422184	129.1390265
25	2241980	391031596	174.4135077	458067944	63056390232	137.6572866
26	3744048	700387284	187.0668549	951999224	139992817520	147.0513988
27	6279996	1250144716	199.0677567	1985163932	309747043484	156.0309647
28	10472560	2224377820	212.4005802	4118332532	683191279168	165.8902660
29	17533852	3945955220	225.0478229	8569510852	1502421404196	175.3217226
30	29202420	6980657120	239.0437888	17749322414	3294913250516	185.6360020
31	48813440	12316788216	252.3237087			
32	81204864	21679127304	266.9683346			
33	135541920	38069421816	280.8682496			
34	225249074	66707096612	296.1481503			
35	375481028	116645701748	310.6567125			
36	623395676	203575691500	326.5593576			
37	1037947386	354631394618	341.6660607			
38	1721755690	616698560604	358.1800625			
39	2863621286	1070636400382	373.8749972			
40	4746373644	1855783566676	390.9897757			

affecting the rate of convergence. Another more radical explanation is that the singularity is not of the assumed form.

Investigating the first possibility, we have used two methods. Firstly, the BakerHunter transformation (Baker and Hunter 1973), in which the series is so transformed that the poles of the Pade approximants give estimates of the dominant and subdominant exponents, provided the critical point is exactly known-as it is. Secondly, we have used the method of integral approximants, introduced by Guttmann and Joyce (1972) as the recurrence relation method. In this method, the series coefficients are
fitted to a homogeneous or inhomogeneous linear ordinary differential equation whose derivatives have polynomial coefficients. From the theory of such equations, it follows that confluent singular behaviour can be well represented.

Both these methods gave no evidence of a conventional singularity structure with weaker confluent terms. Indeed, as the number of coefficients used in the representation increased, so did the estimate of γ, with the final estimates giving $\gamma>3$, and with no evidence of a confluent exponent.

Such behaviour is reminiscent of that of spiral saw, for which the first analyses gave $\gamma \approx 5.2$ (Privman 1983). The exact solution showed that the singularity was of the form $\exp (c \sqrt{n})$, corresponding to a value of infinity for the critical exponent.

The analysis of Hammersley and Welsh (1962) which proved that $c_{n} \sim \mu^{n}$ $\times \exp (O(\sqrt{n}))$ for ordinary saw can be repeated mutatis mutandis for the walks in question here, giving $f(n) \sim \exp (\mathrm{O} \sqrt{n})$. Further, Whittington's analysis indicates more directly the connection between these walks and the number of parititions of the integers, which is known to behave like $\exp (\mathrm{O} \sqrt{n})$.

We have therefore analysed the chain generating function under the assumption that

$$
\begin{equation*}
c_{n} \sim \mu^{n} \exp (\alpha \sqrt{n}) n^{\beta} \tag{3.1}
\end{equation*}
$$

by analogy with the known result (1.1) for pure spiral saw. In this case μ is known, so we are looking for estimates of α and β. These are found as follows. From (3.1) we form the sequence $\left\{t_{n}\right\}$ defined by

$$
\begin{equation*}
t_{n}=n^{1 / 2}\left[\log \left(d_{n}\right)-\log \left(d_{n-2}\right)\right] \sim \alpha-2 \beta / n^{1 / 2}+\mathrm{O}(1 / n) \tag{3.2}
\end{equation*}
$$

where $d_{n}=c_{n} / \mu^{n}$. Then the sequence $\left\{u_{n}\right\}$ defined by

$$
\begin{equation*}
u_{n}=t_{n}-t_{n-2} \sim 2 \beta / n^{3 / 2}+O\left(1 / n^{2}\right) \tag{3.3}
\end{equation*}
$$

gives estimates of β and α, via the sequences $\left\{\beta_{n}^{(1)}\right\}$ and $\left\{\alpha_{n}^{(1)}\right\}$ defined by

$$
\begin{equation*}
\beta_{n}^{(1)}=n^{3 / 2} u_{n} / 2=\beta+\mathrm{O}(1 / \sqrt{n}) \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{n}^{(1)}=t_{n}+2 \beta_{n}^{(1)} / n^{1 / 2}=\alpha+\mathrm{O}(1 / n) \tag{3.5}
\end{equation*}
$$

Improved estimates $\left\{\beta_{n}^{(2)}\right\}$ and $\left\{\alpha_{n}^{(2)}\right\}$ are given by

$$
\begin{equation*}
\beta_{n}^{(2)}=\left[n^{1 / 2} \beta_{n}^{(1)}-(n-2)^{1 / 2} \beta_{n-2}^{(1)}\right] /\left[n^{1 / 2}-(n-2)^{1 / 2}\right] \sim \beta+\mathrm{O}(1 / n) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{n}^{(2)}=\left[n \alpha_{n}^{(1)}-(n-2) \alpha_{n-2}^{(1)}\right] / 2 \sim \alpha+\mathrm{O}\left(1 / n^{3 / 2}\right) \tag{3.7}
\end{equation*}
$$

while further extrapolation, which is in principle possible, no longer improves the exponent estimates.

In the above analysis we used alternate terms to eliminate the oscillatory behaviour that successive terms would cause due to the loose-packed lattice structure. The results of these calculations are shown in table 2. From these data we estimate

$$
\begin{array}{lll}
\alpha=0.13 \pm 0.03 & \beta=-0.8 \pm 0.2 & (\operatorname{model} \mathrm{~A}) \\
\alpha=0.15 \pm 0.03 & \beta=-0.9 \pm 0.2 & (\operatorname{model} \mathrm{~B}) . \tag{3.8}
\end{array}
$$

Table 2. Estimates of exponents α and β for model A and model B walks, under the assumption that $c_{n} \sim \mu^{n} \exp (\alpha \sqrt{n}) n^{\beta}$ with μ known.

	Model B			
n	$\alpha_{n}^{(1)}$	$\alpha_{n}^{(2)}$	$\beta_{n}^{(1)}$	$\beta_{n}^{(2)}$
9	0.26588	0.13460	-0.36827	-0.79413
10	0.28389	0.27110	-0.35926	-0.44664
11	0.30028	0.45507	-0.32092	0.12771
12	0.26709	0.18314	-0.39012	-0.71347
13	0.29268	0.25089	-0.33668	-0.51753
14	0.26647	0.26269	-0.39439	-0.44761
15	0.27900	0.19008	-0.36388	-0.73065
16	0.26363	0.24382	-0.40214	-0.51452
17	0.27111	0.21191	-0.38123	-0.64982
18	0.25747	0.20817	-0.41648	-0.65271
19	0.26426	0.20604	-0.39706	-0.67388
20	0.25273	0.21007	-0.42819	-0.64480
21	0.25696	0.18761	-0.41442	-0.75285
22	0.24820	0.20286	-0.43974	-0.67624
23	0.25104	0.18892	-0.42923	-0.74748
24	0.24315	0.18761	-0.45279	-0.74637
25	0.24580	0.18554	-0.44289	-0.76371
26	0.23871	0.18549	-0.46471	-0.75673
27	0.24058	0.17538	-0.45690	-0.81392
28	0.23464	0.18163	-0.47604	-0.77614
29	0.23597	0.17367	-0.46975	-0.82291
30	0.23053	0.17297	-0.48775	-0.82132

Model A

n	$\alpha_{n}^{(1)}$	$\alpha_{n}^{(2)}$	$\beta_{n}^{(1)}$	$\beta_{n}^{(2)}$
19	0.23603	0.44305	-0.30247	0.55272
20	0.21271	0.11564	-0.35998	-0.80880
21	0.22462	0.11619	-0.32850	-0.83573
22	0.21871	0.27861	-0.34770	-0.09603
23	0.22010	0.17273	-0.33983	-0.58334
24	0.21259	0.14536	-0.36300	-0.70725
25	0.21782	0.19156	-0.34616	-0.49483
26	0.21014	0.18075	-0.36985	-0.53743
27	0.21361	0.16095	-0.35745	-0.64514
28	0.20778	0.17706	-0.37661	-0.55575
29	0.21004	0.16189	-0.36738	-0.64056
30	0.20505	0.16681	-0.38449	-0.60906
31	0.20721	0.16615	-0.37561	-0.61815
32	0.20230	0.16110	-0.39260	-0.63989
33	0.20428	0.15880	-0.38431	-0.65855
34	0.19998	0.16282	-0.39970	-0.63035
35	0.20132	0.15263	-0.39328	-0.69363
36	0.19760	0.15713	-0.40712	-0.66308
37	0.19878	0.15418	-0.40127	-0.68471
38	0.19515	0.15112	-0.41490	-0.69875
39	0.19630	0.15039	-0.40922	-0.70757
40	0.19298	0.15174	-0.42199	-0.69503

It seems likely that α and β for the two models are the same, in which case the quotient

$$
\begin{equation*}
r_{n}=\left(c_{n} / \mu^{n}\right)_{\text {model } \mathrm{A}} /\left(c_{n} / \mu^{n}\right)_{\text {model B }} \tag{3.9}
\end{equation*}
$$

would approach a constant, the ratio of the two amplitudes. The sequence $\left\{r_{n}\right\}$ was formed and analysed, with the result that r_{n} appeared to be approaching a limit of around 0.5 , but convergence was insufficient to assert this too strongly.

We next turn to the mean squared end-to-end distance series in order to estimate ν. We first establish that ν takes the same value for both model A and model B as follows.

If $\left\langle R_{n}^{2}\right\rangle_{\mathrm{A}} \sim n^{2 \nu(\mathrm{~A})}$ and $\left\langle R_{n}^{2}\right\rangle_{\mathrm{B}} \sim n^{2 \nu(\mathrm{~B})}$, then $S_{n}=\left\langle R_{n}^{2}\right\rangle_{\mathrm{A}} /\left\langle R_{n}^{2}\right\rangle_{\mathrm{B}} \sim n^{2(\nu(\mathrm{~A})-\nu(\mathrm{B}))}=n^{2 \phi}$. A straightforward analysis of the sequence $\left\{S_{n}\right\}$ paralleling that reported in Guttmann and Torrie (1985) gives the estimate $|\phi|<0.01$ from which we deduce that $\nu(\mathrm{A})$ is most likely equal to $\nu(\mathrm{B})$. In the following, we assume this to be true.

The next difficulty encountered is that, in analogy with spiral self-avoiding walks, there may be a confluent logarithmic exponent. As Manna's analysis implies, it is difficult to distinguish a singularity of the form $n^{0.85}$ from a singularity of the form

Table 3. Estimates of ν assuming $\left\langle R_{n}^{2}\right\rangle \sim n^{2 \nu}\left(c_{0}+c_{1} / n+c_{2} / n^{2}+\ldots\right) . \nu_{n}^{(1)}$ assumes $c_{n}=0$ for $n \geqslant 1, \nu_{n}^{(2)}$ assumes $c_{n}=0$ for $n \geqslant 2, \nu_{n}^{(3)}$ assumes $c_{n}=0$ for $n \geqslant 3$.

n	Model A			Model B		
	$\nu_{n}^{(1)}$	$\nu_{n}^{(2)}$	$\nu_{n}^{(3)}$	$\nu_{n}^{(1)}$	$\nu_{n}^{(2)}$	$\nu_{n}^{(3)}$
10	0.86575	0.89786	0.50555	0.77869	0.81570	0.82845
11	0.86963	0.91423	1.56231	0.78843	0.82037	0.81216
12	0.85986	0.79815	0.29961	0.78637	0.82473	0.84525
13	0.86762	0.84451	0.46105	0.79375	0.82303	0.82973
14	0.86115	0.87719	1.35147	0.79226	0.82759	0.83552
15	0.86387	0.81338	0.61102	0.79822	0.82727	0.84006
16	0.86030	0.84808	0.64432	0.79691	0.82945	0.83551
17	0.86380	0.86273	1.23289	0.80191	0.82960	0.83780
18	0.85960	0.84799	0.84721	0.80078	0.83180	0.84066
19	0.86240	0.83783	0.62616	0.80501	0.83136	0.83843
20	0.85927	0.85313	0.89945	0.80404	0.83335	0.83996
21	0.86143	0.84254	0.88730	0.80771	0.83328	0.84192
22	0.85855	0.84374	0.74984	0.80682	0.83462	0.84064
23	0.86057	0.84204	0.83681	0.81005	0.83469	0.84179
24	0.85799	0.84550	0.86487	0.80925	0.83600	0.84330
25	0.85973	0.83997	0.81619	0.81212	0.83586	0.84232
26	0.85744	0.84401	0.82612	0.81140	0.83713	0.84359
27	0.85898	0.84001	0.84043	0.81397	0.83707	0.84433
28	0.85691	0.84283	0.82749	0.81330	0.83808	0.84406
29	0.85831	0.83982	0.83729	0.81563	0.83812	0.84491
30	0.85641	0.84223	0.83376	0.81502	0.83910	0.84596
31	0.85768	0.83916	0.82955			
32	0.85595	0.84176	0.83478			
33	0.85710	0.83890	0.83497			
34	0.85551	0.84124	0.83292			
35	0.85658	0.83897	0.84007			
36	0.85510	0.84084	0.83407			
37	0.85609	0.83871	0.83421			
38	0.85471	0.84080	0.84006			
39	0.85564	0.83869	0.83827			
40	0.85436	0.84059	0.83648			

$n^{0.72} \log (n)$ by elementary methods. However we can rule out the confluent logarithmic term by the following analysis.

If $\left\langle R_{n}^{2}\right\rangle \sim A n^{2 \nu}\left(1+c n^{-\Delta}\right)$ then the sequence

$$
\begin{equation*}
\nu(n)=\frac{1}{2} \ln \left(\left\langle R_{n}^{2}\right\rangle /\left\langle R_{n-2}^{2}\right\rangle\right) / \ln (n /(n-2)) \sim \nu+\mathrm{O}\left(1 / n^{\Delta}\right) \tag{3.10}
\end{equation*}
$$

If however $\left\langle R_{n}^{2}\right\rangle \sim A n^{2 \nu}(\log (n))^{\alpha}$, then the sequence

$$
\begin{equation*}
\nu(n) \sim \nu+(\alpha / 2) \log n \tag{3.11}
\end{equation*}
$$

that is, $\nu(n)$ approaches ν from above if $\alpha>0$. For model B we find $\nu(n)$ is a pairwise monotone increasing function for all n (see table 3) so that the limit is being approached from below. If $\left\langle R_{n}^{2}\right\rangle \sim A n^{2 \nu}(\log n)^{\alpha}$ with $\alpha<0$, then $\nu(n)$ defined by (3.10) approaches ν from below. If it is accepted that both series have the same exponent ν and the same confluent logarithmic correction (if any) then the behaviour of model A extrapolants, which approach ν from above, imply $\alpha>0$. This contradiction implies that neither series has a confluent logarithmic term.

Table 4. Estimates of ν assuming $\left\langle R_{n}^{2}\right\rangle \sim n^{2 \nu}\left(b_{0}+b_{1} / n^{1 / 2}+b_{2} / n+b_{3} / n^{3 / 2}+\ldots\right) . \quad \nu_{n}^{(1)}$ assumes $b_{n}=0$ for $n \geqslant 1, \nu_{n}^{(2)}$ assumes $b_{n}=0$ for $n \geqslant 2, \nu_{n}^{(3)}$ assumes $b_{n}=0$ for $n \geqslant 3$.

n	Model A			Model B		
	$\nu_{n}^{(1)}$	$\nu_{n}^{(2)}$	$\nu_{n}^{(3)}$	$\nu_{n}^{(1)}$	$\nu_{n}^{(2)}$	$\nu_{n}^{(3)}$
10	0.86575	0.88091	0.80406	0.77869	0.85708	0.87075
11	0.86963	0.89081	1.03312	0.78843	0.85567	0.77648
12	0.85986	0.83041	0.71564	0.78637	0.86675	0.91514
13	0.86762	0.85654	0.77016	0.79375	0.85485	0.85032
14	0.86115	0.86886	0.97534	0.79226	0.86576	0.85981
15	0.86387	0.83953	0.78817	0.79822	0.85846	0.88195
16	0.86030	0.85440	0.80715	0.79691	0.86424	0.85359
17	0.86380	0.86328	0.94680	0.80191	0.85907	0.86364
18	0.85960	0.85396	0.85233	0.80078	0.86470	0.86841
19	0.86240	0.85046	0.79896	0.80501	0.85921	0.86040
20	0.85927	0.85628	0.86616	0.80404	0.86425	0.86019
21	0.86143	0.85222	0.86019	0.80771	0.86016	0.86914
22	0.85855	0.85132	0.82770	0.80682	0.86377	0.85897
23	0.86057	0.85152	0.84798	0.81005	0.86048	0.86386
24	0.85799	0.85188	0.85484	0.80925	0.86394	0.86585
25	0.85973	0.85006	0.84201	0.81212	0.86062	0.86225
26	0.85744	0.85086	0.84498	0.81140	0.86391	0.86344
27	0.85898	0.84968	0.84740	0.81397	0.86108	0.86687
28	0.85691	0.85000	0.84462	0.81330	0.86380	0.86237
29	0.85831	0.84923	0.84632	0.81563	0.86142	0.86594
30	0.85641	0.84944	0.84566	0.81502	0.86402	0.86712
31	0.85768	0.84857	0.84398			
32	0.85595	0.84897	0.84553			
33	0.85710	0.84815	0.84493			
34	0.85551	0.84848	0.84471			
35	0.85658	0.84790	0.84596			
36	0.85510	0.84807	0.84467			
37	0.85609	0.84752	0.84427			
38	0.85471	0.84785	0.84594			
39	0.85564	0.84727	0.84505			
40	0.85436	0.84756	0.84485			

We have therefore analysed for the form $\left\langle R_{n}^{2}\right\rangle \sim A n^{2 \nu}$. Two methods of analysis were used. In the first, we assumed that

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle-n^{2 \nu}\left(c_{0}+c_{1} / n+c_{2} / n^{2}+c_{3} / n^{3}+\ldots\right) \tag{3.12}
\end{equation*}
$$

and successively eliminated c_{0}, c_{1}, c_{2} by forming a Neville table to the sequence $\nu(n)$ defined above. The second method of analysis was suggested by the form (3.1) found for the chain generating function for this model and for the spiral saw model. In both cases correction terms of order $n^{1 / 2}$ appeared, and such correction terms will impress themselves on the $\left\langle R_{n}^{2}\right\rangle$ sequence, so the second method of analysis assumed

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle \sim n^{2 \nu}\left(b_{0}+b_{1} / n^{1 / 2}+b_{2} / n+b_{3} / n^{3 / 2}+\ldots\right) \tag{3.13}
\end{equation*}
$$

with successive estimates eliminating b_{0}, b_{1}, b_{2}, etc.
The results for both methods applied to both models are shown in tables 3 and 4. The first method of analysis gave $\nu \approx 0.844$, while the second gave $\nu \approx 0.864$. Subsequently we tried further refinements of the analysis which included repeatedly averaging successive terms in the $\left\langle R_{n}^{2}\right\rangle$ sequence, which has the effect of leaving the dominant exponent unchanged while reducing the effect of the singularity on the negative real axis (at -1). The results of these analyses (not shown) confirmed the above results. Further, we obtained similar estimates for model A from both methods of analysis. We thus conclude that $\nu=0.855 \pm 0.020$ for both models.

4. Conclusion

The two models discussed here appear to display quite different behaviour from that found by any other self-avoiding walk model. The apparent form of c_{n} includes features of both the ordinary SAw model and the spiral saw model.

The critical exponent for the mean square end-to-end distance sequence also takes on a value not shared by any other saw type model. The initially surprising fact that ν is larger than the corresponding value for ordinary or spiral saw simply means that these two constraints combine to cause the walk to spread out more than would be the case for each constraint individually.

We find strong, though not overwhelming, evidence that the two models display the same critical behaviour.

Acknowledgments

We have had the benefit of helpful discussions and correspondence with Professor Stuart G Whittington. Professor Alan Sokal made helpful comments on the manuscript.

[^0]Hammersley J M and Welsh D J A 1962 Q. J. Math. 13108
Manna S S 1984 J. Phys. A: Math. Gen. 17 L899
Nienhuis B 1982 Phys. Rev. Lett. 491062

- 1984 J. Stat. Phys. 34731

Privman V 1983 J. Phys. A: Math. Gen. 16 L571
Whittington S G 1985 J. Phys. A: Math. Gen. 18 L67

[^0]: References

 Baker G A Jr and Hunter D L 1973 Phys. Rev. B 73377
 Blöte H W and Hilhorst H J 1984 J. Phys. A: Math. Gen. 17 L111
 Guttmann A J 1986 On universality classes for random walks in preparation
 Guttmann A J and Joyce G S 1972 J. Phys. A: Gen. Phys. 5 L81
 Guttmann A J and Torrie G M 1984 J. Phys. A: Math. Gen. 173539
 Guttmann A J and Wormaid N C 1984 J. Phys. A: Math. Gen. 17 L271

