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Two-dimensional anisotropic spiral self-avoiding walks 
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Department of Mathematics, Statistics and Computer Science, The University of Newcastle, 
NSW 2308, Australia 

Received 1 August 1985 

Abstract. Two models of anisotropic spiral self-avoiding random walks recently proposed 
by Manna have been investigated by the method of exact series expansions. The number 
of such n-step walks, c,, appears to behave like c, -constant x p n n B  exp(cr\/;;) where both 
p, which is known exactly, and the constant factor are model dependent but (I = 0.14 and 
p = 0.9 appear to be model independent. The mean square end-to-end distance exponent 
Y = 0.855 *0.02 for both models. 

1. Introduction 

Recently Manna (1984) proposed two variants of the problem of self-avoiding walks 
(SAW) on the square lattice. These variants combine the features of the normal SAW 

and the spiral SAW, recently introduced by Privman (1983) and subsequently solved 
by Guttmann and Wormald (1984) and Blote and Hilhorst (1984). In the square lattice 
spiral SAW, no step through -7~12 is permitted. That is, in addition to the self-avoiding 
constraint, no ‘turns to the right’ are permitted at any step. This additional constraint 
dramatically changes the critical behaviour from that of the normal SAW, in that the 
number of n-step spiral SAW, denoted by s,, behaves like 

s, - c e~p[2.rr(n/3)’ /~1/n’/~( l  +o(n-’/’)) 

(R2,)- n In n. (1.2) 

(1.1) 

where c = 7 r / ( 4 ~ 3 ” ~ ) ,  while the mean square end-to-end distance ( R z )  behaves like 

Manna’s models are a mixture of the ordinary and spiral SAW, in that the spiral 
constraint applies only to steps in the direction of the x axis. To be more precise, if 
the nth step is in the +x or -x direction, the ( n  + 1)th step cannot be in the -y  or +y 
direction, respectively. If the nth step is in the * y  direction, then in model A the 
( n  + 1)th step cannot be in the same (i.e. * y )  direction, while in model B the ( n  + 1)th 
step is unconstrained, apart from the global SAW constraint that applies to all steps. 

These two models, and the spiral SAW model, do not appear to be of any physical 
significance, but are interesting as models which display ‘different’ critical behaviour. 
As such, they are illuminating in our study of the mechanism whereby the universality 
class of SAW models changes, which is the subject of a subsequent paper in this series 
(Guttmann 1986). 

0305-4470/86/091645 + 09$02.50 @ 1986 The Institute of Physics 1645 



1646 A J Guttmann and K J Wallace 

2. Series derivation 

Manna obtained 28 and 21 terms in the series expansion of the generating function 
for model A and B walks respectively, and a similar number of terms for the mean 
square end-to-end distance sequence. Adopting the usual notational conventions, we 
write the chain generating function as 

where c, is the number of n-step walks, cn - p ’ f ( n )  and l im,+m(l /n)  logf(n)=O. 
For ordinary SAW f( n )  is believed to behave like f( n) - n ( Y - ’ ) ,  but all that has been 
proved (Hammersley and Welsh 1962) is that f ( n )  = O(eJ;;). For spiral SAW, as we 
have seen, f ( n )  - e x p [ 2 ~ ( n / 3 ) “ ’ ] / n ~ / ~ .  

The mean square end-to-end distance, denoted ( R i ) ,  is known to behave as 

(RE) - An2’ (2.2) 

where v=: for two-dimensional SAW (Nienhuis 1982, 1984) while for spiral SAW 

(Rt)-An log n (Blote and Hilhorst 1984). 
Manna’s brief analysis of his series coefficients assumed f( n) - ng, and he found 

p z 2 . 0 4  (model B), p z 1 . 6 3  (model A), y=1.613 (B) and y=1.535 (A),  v =  
0.828 f 0.001 (B) and v = 0.852* 0.002 (A). An alternative analysis assuming ( R t )  - 
N2”Iog N gave v==0.735*0.015 (A) and v=0.723*0.009 (B). 

Subsequently Whittington (1985) gave a convincing but non-rigorous argument 
which showed that p = $( 1 +fi) (model A) and p = 2 (model B). Given that Manna’s 
estimates for p are in error by about 2%, and that the error in p normally compares 
to the error in y in the ratio 1 : N, where N is the number of coefficients, the apparent 
precision in y and claimed precision in v seem somewhat optimistic. In this paper 
we have extended Manna’s series by 12 and 9 terms for models A and B respectively, 
and have performed a thorough series analysis. The series coefficients are shown in 
table 1. They were derived by a straightforward counting procedure on a VAX 11/780. 
The algorithm used was essentially a backtracking algorithm, comprising nested DO 
loops. Making maximum use of symmetry, the series obtained took 140 h of CPU time 
for model A and 309 h for model B. 

3. Series analysis 

Firstly, assuming a singularity of the conventional type as assumed by Manna, so that 
C ( x )  -A( 1 - px)-”, unbiased ratio and d log Pad6 methods gave estimates of p above 
the exact value, but slowly approaching the exact value as the number of terms used 
in the approximation increased. Convergence was found to be slow and, in the case 
of the Pad6 approximants, more than usually erratic. Performing a biased analysis, 
using the exact values of p, the estimates of y were found to be steadily increasing 
with the order of the approximants. For both models, this behaviour suggested y > 2.6, 
which is numerically a large value for a critical exponent. This immediately suggests 
the following observation: if the exponent is so large, we would expect the singularity 
to dominate the series behaviour, and hence that the usual methods would converge 
rapidly to the correct values of p and y. Why does this not happen? There are two 
possible answers. One is that there are strong confluent or competing singularities 
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Table 1. Series coefficients of chain generating function and mean square end-to-end 
distance. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

4 
8 

16 
28 
52 
90 

160 
276 
484 
826 

1434 
2 438 
4 194 
7 104 

12 150 
20 506 
34 898 
58 740 
99 568 

167 186 
282 468 
473 318 
797 462 

1 333 866 
2 241 980 
3 744 048 
6 279 996 

10 472 560 
17 533 852 
29 202 420 
48 813 440 
81 204 864 

135 541 920 
225 249 074 
375 481 028 
623 395 676 

1037947386 
1721755690 

4 
20 
72 

212 
556 

1348 
3 088 
6 788 

14 428 
29 896 
60 602 

120 736 
236 842 
458 784 
878 582 

1 666 356 
3 132 674 
5 844 700 

10 828 048 
19 937 200 
36 499 324 
66 480 204 

120 510 542 
217 518 408 
391 03 1 596 
700 387 284 

1 250 144 716 
2224377820 
3945955220 
6980657 120 

12316788216 
21679127304 
38 069 421 816 
66707096612 

116645701748 
203575691500 
354631394618 
616698560604 

1 .000 0000 
2.500 0000 
4.500 OOOO 
7.571 4286 

10.692 3077 
14.977 1778 
19.300 0000 
24.594 2029 
29.809 9174 
36.193 7046 
42.260 8089 
49.522 5595 
56.471 6261 
64.581 0811 
72.311 2757 
81.261 8746 
89.766 5769 
99.501 1917 

108.750 2812 
119.251 6120 
129.215 7837 
140.455 6852 
151.117 5981 
163.073 6581 
174.413 5077 
187.066 8549 
199.067 7567 
212.400 5802 

4 
10 
24 
54 

124 
272 
608 

1314 
2 884 
6 178 

13 388 
28 486 
61 168 

129 446 
276 020 
581 572 

1 233 204 
2 588 906 
5 464 816 

11 437 088 
24 050 760 
50 201 640 

105 228 216 
219 139 194 
458 067 944 
95 1 999 224 

1985163932 
4118332532 

4 
28 

120 
424 

1340 
3 944 

11 024 
29 664 
77 444 

197 428 
493 324 

1 212 616 
2 938 432 
7 034 908 

16 662 788 
39 102 224 
90 996 020 

210 202 724 
482 319 552 

I 100 067 208 
2495186664 
5631375824 

12650695032 
28299422184 
63 056 390 232 

139992817520 
309747043484 
683 191 279 168 

1 .ooo 0000 
2.800 0000 
5.000 0000 
7.851 8519 

10.806 4516 
14.500 0000 
18.131 5789 
22.575 3425 
26.852 9820 
3 1.956 6203 
36.848 2223 
42.568 8408 
48.038 7131 
54.346 2757 
60.368 0458 
67.235 3965 
73.788 2946 
81.193 6486 
88.259 0653 
96.184 2042 

103.746 6868 
112.175 1366 
120.221 5101 
129.139 0265 
137.657 2866 
147.051 3988 
156.030 9647 
165.890 2660 

225.047 8229 8 569 510 852 1 502 421 404 196 175.321 7226 
239.043 7888 185.636 0020 
252.323 7087 
266.968 3346 
280.868 2496 
296.148 1503 
310.656 7125 
326.559 3576 
341.666 0607 
358.1800625 

17 749 322 414 3 294913 250 516 

2863621286 1070636400382 373.8749972 
4 746 373 644 1 855 783 566 676 390.989 7757 

affecting the rate of convergence. Another more radical explanation is that the 
singularity is not of the assumed form. 

Investigating the first possibility, we have used two methods. Firstly, the Baker- 
Hunter transformation (Baker and Hunter 1973), in which the series is so transformed 
that the poles of the Padk approximants give estimates of the dominant and sub- 
dominant exponents, provided the critical point is exactly known-as it is. Secondly, 
we have used the method of integral approximants, introduced by Guttmann and Joyce 
(1972) as the recurrence relation method. In this method, the series coefficients are 
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fitted to a homogeneous or inhomogeneous linear ordinary differential equation whose 
derivatives have polynomial coefficients. From the theory of such equations, it follows 
that confluent singular behaviour can be well represented. 

Both these methods gave no evidence of a conventional singularity structure with 
weaker confluent terms. Indeed, as the number of coefficients used in the representation 
increased, so did the estimate of y, with the final estimates giving y > 3, and with no 
evidence of a confluent exponent. 

Such behaviour is reminiscent of that of spiral SAW, for which the first analyses 
gave y = 5.2 (Privman 1983). The exact solution showed that the singularity was of 
the form exp(c&), corresponding to a value of infinity for the critical exponent. 

The analysis of Hammersley and Welsh (1962) which proved that c , - p n  
xexp(O(&)) for ordinary SAW can be repeated mutatis mutandis for the walks in 
question here, giving f( n) - e x p ( O 6 ) .  Further, Whittington’s analysis indicates more 
directly the connection between these walks and the number of parititions of the 
integers, which is known to behave like exp(O&). 

We have therefore analysed the chain generating function under the assumption that 

c, - p n  exp(a&)nP (3.1) 

by analogy with the known result ( 1 . 1 )  for pure spiral SAW. In this case p is known, 
so we are looking for estimates of a and p. These are found as follows. From (3.1) 
we form the sequence { t , }  defined by 

t ,  = n ” ’ [ I ~ g ( d , ) - l ~ g ( d , _ ~ ) ] - ~  -2P/n1/’+0(1/n)  (3.2) 

U, = t, - tn-2 - 2 ~ / ~ ~ / ’ + o (  l id )  

p p  = n3/2U,/2 = p + o( I/&) 

where d, = c n / p ” .  Then the sequence {U,} defined by 

(3.3) 

gives estimates of P and a, via the sequences {p“”}  and {a(,‘)} defined by 

(3.4) 

and 

(3.5) , = t ,  + 2P(,‘)/n1/2 = a +O( l /n) .  

Improved estimates { P Z ) }  and {a?)} are given by 

p‘,‘) = [n’ / ’p( , ‘ )  - ( n  -2)’”pc,‘12]/[n1/’- ( n  -2)’’’I - p +0( l / n )  (3.6) 

and 

a:’) = [na(,‘) - (n - 2)a(,‘12]/2 - a + o( 1/ n3I2)  (3.7) 

while further extrapolation, which is in principle possible, no longer improves the 
exponent estimates. 

In the above analysis we used alternate terms to eliminate the oscillatory behaviour 
that successive terms would cause due to the loose-packed lattice structure. The results 
of these calculations are shown in table 2. From these data we estimate 

a =0.13*0.03 P = -0.8 * 0.2 (model A) 

a =0.15*0.03 /3 = -0.9 f 0.2 (model B). 
(3.8) 
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Table 2. Estimates of exponents a and P for model A and model B walks, under the 
assumption that c, - p" exp(a&)na with p known. 

Model B 

9 0.265 88 0.13460 -0.368 27 -0.794 13 
10 0.283 89 0.271 10 -0.359 26 -0.446 64 
11 0.300 28 0.455 07 -0.320 92 0.127 71 
12 0.267 09 0.183 14 -0.390 12 -0.713 47 
13 0.292 68 0.250 89 -0.336 68 -0.517 53 
14 0.266 47 0.262 69 -0.394 39 -0.447 61 
15 0.279 00 0.190 08 -0.363 88 -0.730 65 
16 0.263 63 0.243 82 -0.402 14 -0.514 52 
17 0.271 11 0.211 91 -0.381 23 -0.649 82 
18 0.257 47 0.208 17 -0.416 48 -0.652 71 
19 0.264 26 0.206 04 -0.397 06 -0.673 88 
20 0.252 73 0.210 07 -0.428 19 -0.644 80 
21 0.256 96 0.187 61 -0.414 42 -0.752 85 
22 0.248 20 0.202 86 -0.439 74 -0.676 24 
23 0.251 04 0.188 92 -0.429 23 -0.747 48 
24 0.243 15 0.187 61 -0.452 79 -0.746 37 
25 0.245 80 0.185 54 -0.442 89 -0.763 71 
26 0.238 71 0.185 49 -0.464 71 -0.756 73 
27 0.240 58 0.175 38 -0.456 90 -0.813 92 
28 0.234 64 0.181 63 -0.476 04 -0.776 14 
29 0.235 97 0.173 67 -0.469 75 -0.822 91 
30 0.230 53 0.172 97 -0.487 75 -0.821 32 

Model A 

n a ( 2 1  

19 0.236 03 
20 0.212 71 
21 0.224 62 
22 0.218 71 
23 0.220 10 
24 0.212 59 
25 0.217 82 
26 0.210 14 
27 0.213 61 
28 0.207 78 
29 0.210 04 
30 0.205 05 
31 0.207 21 
32 0.202 30 
33 0.204 28 
34 0.199 98 
35 0.201 32 
36 0.197 60 
37 0.198 78 
38 0.195 15 
39 0.196 30 
40 0.192 98 

0.443 05 
0.115 64 
0.116 19 
0.278 61 
0.172 73 
0.145 36 
0.191 56 
0.18075 
0.16095 
0.177 06 
0.161 89 
0.166 81 
0.166 15 
0.161 10 
0.158 80 
0.162 82 
0.152 63 
0.157 13 
0.154 18 
0.151 12 
0.150 39 
0.151 74 

-0.302 47 
-0.359 98 
-0.328 50 
-0.347 70 
-0.339 83 
-0.363 00 
-0.346 16 
-0.369 85 
-0.357 45 
-0.376 61 
-0.367 38 
-0.384 49 
-0.375 61 
-0.392 60 
-0.384 31 
-0.399 70 
-0.393 28 
-0.407 12 
-0.401 27 
-0.414 90 
-0.409 22 
-0.421 99 

0.552 72 
-0.808 80 
-0.835 73 
-0.096 03 
-0.583 34 
-0.707 25 
-0.494 83 
-0.537 43 
-0.645 14 
-0.555 75 
-0.640 56 
-0.609 06 
-0.618 15 
-0.639 89 
-0.658 55 
-0.630 35 
-0.693 63 
-0.663 08 
-0.684 71 
-0.698 75 
-0.707 57 
-0.695 03 
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It seems likely that a and /3 for the two models are the same, in which case the quotient 

r,, = ( c n / P  )model A/ ( c n /  P )model B (3.9) 

would approach a constant, the ratio of the two amplitudes. The sequence { r , }  was 
formed and analysed, with the result that r,  appeared to be approaching a limit of 
around 0.5, but convergence was insufficient to assert this too strongly. 

We next turn to the mean squared end-to-end distance series in order to estimate 
v. We first establish that v takes the same value for both model A and model B as follows. 

If ( R i ) A  - n 2 ” ( A )  and (R:)B - n 2 ” ( B ) ,  then S,  = (Ri)A/(R’,) ,  - n 2 ( u ( A ) - v ( B ) )  = n2’. A 
straightforward analysis of the sequence { S,,} paralleling that reported in Guttmann 
and Torrie (1985) gives the estimate 141 <0.01 from which we deduce that v ( A )  is 
most likely equal to v(B).  In the following, we assume this to be true. 

The next difficulty encountered is that, in analogy with spiral self-avoiding walks, 
there may be a confluent logarithmic exponent. As Manna’s analysis implies, it is 
difficult to distinguish a singularity of the form from a singularity of the form 

Table 3. Estimates of U assuming (R:) - n2’( c,, + c,/ n + c2/ n2 + . . .). u t ’  assumes c, = 0 
for n P I ,  U‘,‘’ assumes c, = o for n 3 2, ui3)  assumes c, = o for n P 3. 

10 0.86575 
11 0.86963 
12 0.85986 
13 0.86762 
14 0.861 15 
15 0.86387 
16 0.86030 
17 0.86380 
18 0.85960 
19 0.86240 
20 0.85927 
21 0.86143 
22 0.85855 
23 0.86057 
24 0.85799 
25 0.85973 
26 0.85744 
27 0.85898 
28 0.85691 
29 0.85831 
30 0.85641 
31 0.85768 
32 0.85595 
33 0.857 10 
34 0.85551 
35 0.85658 
36 0.855 10 
37 0.85609 
38 0.85471 
39 0.85564 
40 0.85436 

0.897 86 
0.914 23 
0.798 15 
0.844 51 
0.877 19 
0.813 38 
0.848 08 
0.862 73 
0.847 99 
0.837 83 
0.853 13 
0.842 54 
0.843 74 
0.842 04 
0.845 50 
0.839 97 
0.844 01 
0.840 01 
0.842 83 
0.839 82 
0.842 23 
0.839 16 
0.841 76 
0.838 90 
0.841 24 
0.838 97 
0.840 84 
0.838 71 
0.840 80 
0.838 69 
0.840 59 

0.505 55 
1.562 31 
0.299 61 
0.461 05 
1.351 47 
0.61 1 02 
0.644 32 
1.232 89 
0.847 21 
0.626 16 
0.899 45 
0.887 30 
0.749 84 
0.836 81 
0.864 87 
0.816 19 
0.826 12 
0.840 43 
0.827 49 
0.837 29 
0.833 76 
0.829 55 
0.834 78 
0.834 97 
0.832 92 
0.840 07 
0.834 07 
0.834 21 
0.840 06 
0.838 27 
0.836 48 

0.778 69 
0.788 43 
0.786 37 
0.793 75 
0.792 26 
0.798 22 
0.796 91 
0.801 91 
0.800 78 
0.805 01 
0.804 04 
0.807 71 
0.806 82 
0.81005 
0.809 25 
0.812 12 
0.811 40 
0.813 97 
0.813 30 
0.815 63 
0.815 02 

0.815 70 
0.820 37 
0.824 73 
0.823 03 
0.827 59 
0.827 27 
0.829 45 
0.829 60 
0.831 80 
0.831 36 
0.833 35 
0.833 28 
0.834 62 
0.834 69 
0.836 00 
0.835 86 
0.837 13 
0.837 07 
0.838 08 
0.838 12 
0.839 10 

0.828 45 
0.812 16 
0.845 25 
0.829 73 
0.835 52 
0.840 06 
0.835 51 
0.837 80 
0.840 66 
0.838 43 
0.839 96 
0.841 92 
0.840 64 
0.841 79 
0.843 30 
0.842 32 
0.843 59 
0.844 33 
0.844 06 
0.844 91 
0.845 96 
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log( n) by elementary methods. However we can rule out the confluent logarithmic 
term by the following analysis. 

If (R:) - An2"( 1 + cn-") then the sequence 

v(n) =tln((R',)/(R2n-2))/ln(n/(n -2 ) )  - v + o ( l / n " ) .  (3.10) 

If however ( R : )  - An2"(log(n))", then the sequence 

v( n )  - v +  ( a / 2 )  log n (3.11) 

that is, v( n )  approaches vfrom above if a > 0. For model B we find v( n) is a pairwise 
monotone increasing function for all n (see table 3) so that the limit is being approached 
from below. If (R:)- An2"(log n)" with a < 0, then v(n) defined by (3.10) approaches 
v from below. If it is accepted that both series have the same exponent v and the 
same confluent logarithmic correction (if any) then the behaviour of model A 
extrapolants, which approach v from above, imply a > 0. This contradiction implies 
that neither series has a confluent logarithmic term. 

Table 4. Estimates of Y assuming ( R t ) -  n2"(b,+ b , / n " 2 +  b 2 / n +  b 3 / n 3 I 2 + .  . .). v'," 
assumes b, = 0 for n 1, v'." assumes b, = 0 for n 3 2, vi3' assumes b, = 0 for n 3 3. 

10 0.86575 
11 0.86963 
12 0.85986 
13 0.86762 
14 0.861 15 
15 0.86387 
16 0.86030 
17 0.86380 
18 0.85960 
19 0.86240 
20 0.85927 
21 0.861 43 
22 0.85855 
23 0.86057 
24 0.85799 
25 0.85973 
26 0.857 44 
27 0.85898 
28 0.85691 
29 0.858 31 
30 0.85641 
31 0.85768 
32 0.85595 
33 0.857 10 
34 0.85551 
35 0.85658 
36 0.855 10 
37 0.85609 
38 0.85471 
39 0.85564 
40 0.85436 

0.880 91 
0.890 81 
0.830 41 
0.856 54 
0.868 86 
0.839 53 
0.854 40 
0.863 28 
0.853 96 
0.850 46 
0.856 28 
0.852 22 
0.851 32 
0.851 52 
0.851 88 
0.850 06 
0.850 86 
0.849 68 
0.850 00 
0.849 23 
0.849 44 
0.848 57 
0.848 97 
0.848 15 
0.848 48 
0.847 90 
0.848 07 
0.847 52 
0.847 85 
0.847 27 
0.847 56 

0.804 06 
1.033 12 
0.715 64 
0.770 16 
0.975 34 
0.788 17 
0.807 15 
0.946 80 
0.852 33 
0.798 96 
0.866 16 
0.860 19 
0.827 70 
0.847 98 
0.854 84 
0.842 01 
0.844 98 
0.847 40 
0.844 62 
0.846 32 
0.845 66 
0.843 98 
0.845 53 
0.844 93 
0.844 71 
0.845 96 
0.844 67 
0.844 27 
0.845 94 
0.845 05 
0.844 85 

0.778 69 
0.788 43 
0.786 37 
0.793 75 
0.792 26 
0.798 22 
0.796 91 
0.801 91 
0.800 78 
0.805 01 
0.804 04 
0.807 71 
0.806 82 
0.810 05 
0.809 25 
0.812 12 
0.811 40 
0.813 97 
0.813 30 
0.815 63 
0.815 02 

0.857 08 
0.855 67 
0.866 75 
0.854 85 
0.865 76 
0.858 46 
0.864 24 
0.859 07 
0.864 70 
0.859 21 
0.864 25 
0.860 16 
0.863 77 
0.860 48 
0.863 94 
0.860 62 
0.863 91 
0.861 08 
0.863 80 
0.861 42 
0.864 02 

0.870 75 
0.776 48 
0.915 14 
0.850 32 
0.859 81 
0.881 95 
0.853 59 
0.863 64 
0.868 41 
0.860 40 
0.860 19 
0.869 14 
0.858 97 
0.863 86 
0.865 85 
0.862 25 
0.863 44 
0.866 87 
0.862 37 
0.865 94 
0.867 12 
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We have therefore analysed for the form ( R : )  - An”. Two methods of analysis 

(3.12) 

and successively eliminated coy c1, c2 by forming a Neville table to the sequence v ( n )  
defined above. The second method of analysis was suggested by the form (3.1) found 
for the chain generating function for this model and for the spiral SAW model. In both 
cases correction terms of order n1/2  appeared, and such correction terms will impress 
themselves on the ( R i )  sequence, so the second method of analysis assumed 

(R2,)- n 2 ’ ( b o + b , / n ’ ’ 2 + b 2 / n + b , / n 3 / 2 + .  . .) (3.13) 

with successive estimates eliminating bo, bl, b2, etc. 
The results for both methods applied to both models are shown in tables 3 and 4. 

The first method of analysis gave ~~0.844, while the second gave ~~0.864. Sub- 
sequently we tried further refinements of the analysis which included repeatedly 
averaging successive terms in the ( R : )  sequence, which has the effect of leaving the 
dominant exponent unchanged while reducing the effect of the singularity on the 
negative real axis (at -1). The results of these analyses (not shown) confirmed the 
above results. Further, we obtained similar estimates for model A from both methods 
of analysis. We thus conclude that v = 0.855 * 0.020 for both models. 

were used. In the first, we assumed that 

( ~ 2 , )  - n2”(  co + cl/ n + c2/ n2  + c3/ n3  + . . .) 

4. Conclusion 

The two models discussed here appear to display quite different behaviour from that 
found by any other self-avoiding walk model. The apparent form of c, includes features 
of both the ordinary SAW model and the spiral SAW model. 

The critical exponent for the mean square end-to-end distance sequence also takes 
on a value not shared by any other SAW type model. The initially surprising fact that 
v is larger than the corresponding value for ordinary or spiral SAW simply means that 
these two constraints combine to cause the walk to spread out more than would be 
the case for each constraint individually. 

We find strong, though not overwhelming, evidence that the two models display 
the same critical behaviour. 
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